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Abstract

A method based on the Padé approximations is applied to the solution of the
point kinetics equations with a time varying reactivity. The technique consists
of treating explicitly the roots of the inhour formula. A significantimprovement
has been observed by treating explicitly the most dominant roots of the inhour
equation, which usually would make the Padé approximation inaccurate. Also
the analytical inversion method which permits a fast inversion of polynomials
of the point kinetics matrix is applied to the Padé approximations. Results
are presented for several cases of Padé approximations using various options
of the method with different types of reactivity. The formalism is applicable
equally well to non-linear problems, where the reactivity depends on the neutron
density through temperature feedback. It was evident that the presented method
is particularly good for cases in which the reactivity can be represented by a
series of steps and performed quite well for more general cases.

PACS numbers: 02.30.Myv, 28.20.—v

1. Introduction

In a previous work [1] the analytical inversion method that permits a fast inversion of
polynomials of the point kinetics matrix was introduced. The method was applied to different
cases of Padé approximations as a solution of reactor dynamics with a step input of reactivity.

In the form considered here, the point reactor kinetics equations are a system of coupled
non-linear ordinary differential equations. Included in the system are equations which describe
the neutron level, time-dependent reactivity, an arbitrary number of delayed neutron groups
and any thermodynamics variables that enter into the reactivity equation. These equations
are used to describe the power as neutronic properties of the internal elements of a nuclear
reactor that change with time. This would include the motion of control rods, the motion of
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fuel material in an accident scenario, the loss of coolant as the reactor undergoes a blow-down
accident and additional material motion. The equations are formulated as a set (usually of
seven) of ordinary differential equations that can exhibit a rather stiff solution (widely spaced
eigenvalues). Except for a few special cases, it is not possible to obtain closed solutions to
these equations in terms of elementary functions because of a time-dependent reactivity and
the stiffness. The time dependence makes it difficult to obtain an analytical solution, and thus
a numerical integration is usually employed [2, 3]. The stiffness of the kinetics equations,
however, restricts the time step to a small increment, making the numerical solution very
inefficient [2-5]. Several methods have been proposed to overcome this difficulty [2, 4, 5],
but they do not seem fully satisfactory because of their lack of accuracy, generality and/or
simplicity. In the previous work the analytical approach based on the analytical inversion
method, which has a direct applicability on the Padé approximation, has been introduced [1].
This method provides a fast and an accurate computational technique for the point kinetics
equations with step reactivity and a large time increment (time step) compared to the other
conventional methods.

The aim of this work is to apply the analytical inversion method to the solution of the point
reactor kinetics equations using different types of Padé approximations and time-dependent
reactivity with temperature feedback. The presence of temperature feedback is useful in
providing an estimate of the transient behaviour of a reactor power and of other system
variables in a reactor core, which are fairly tightly coupled.

Many authors have treated the problem of reactivity feedback for the point kinetics
equations. Frohlich and Johnson [6] obtained a solution using a constant heat removal model
for a ramp input of reactivity. Russel and Duncan [7] have recently used a similar model
for investigating non-adiabatic excursions for a large step input of reactivity. Recently, the
asymptotically stable solution for the neutron density in the point-reactor kinetics equations
was obtained by Gupta [8] for a step input of reactivity in the presence of m groups of delayed
neutrons. March-Leuba et al [9] have shown that a phenomenological model that retains the
essential physical processes dominating the dynamics behaviour of a BWR can be described
by a one-point representation of the reactor kinetics, a one-point representation of the heat
transfer process in the fuel and two-node representations of the channel thermal hydraulics to
account for the void reactivity feedback.

In section 2 areview of the basic procedure for the solution for the point kinetics equations
with time varying reactivity is presented. Section 3 includes applications of different types
of Padé approximations to this solution. Numerical results are discussed in section 4 and the
conclusion comes finally in section 5.

2. General solution of the reactor Kinetics equations

In the space-average approximation, the differential equations of the point-reactor kinetics
equations with G groups of delayed neutrons in terms of the generation time may be written
as

dN@D  p() =B N

= N<r>+l_§=1:x,c,<r>+s<r> )
Gy B .

= = 2N = MG i=12,....,G )
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and the Newtonian feedback from the fuel temperature can be written as

dT(t)—KNt T—-T
D= KNO = (T =T

p(t) = 1(t) +b[T (1) — To]

3)

where

N (1) and Ci(f) = weighted integrals of the neutron density and ith precursor concentrations
(i=12,...,G)

S(¢) = source term

p(t) = net reactivity

B, Bi, A; = delayed neutron constants (i = 1, 2,..., G), where G is the total number of
delayed neutron groups

T(t), Tp and T. = the temperature of the reactor at time ¢, zero and effective coolant
temperature, respectively

K = the reciprocal of the reactor heat capacity and (1/y) is interpreted as the mean time
for heat transfer to the coolant

A = neutron generation time

b = the temperature coefficient of reactivity

I (t) = the impressed reactivity

Anticipating a very short time scale for the excursion, we ignore heat loss when the time
constant for heat transfer (1/y) is very large compared to the time scale of the excursion and
use the adiabatic model as

ar@m _
G - KNO . (3a)

p(1) = I(t) +b[T (1) — To]

The reactivity p(¢) is represented in generalized notation

p(t) = 1(t) + F(1) “)

where F(f) is a function representing the reactivity feedback. For example, I (f) may have
the form sin(wt), exp(wt), or a polynomial in ¢, while F(f) may be a function of temperature,
power level, density or other variables. Assume a shutdown effect proportional to integrated
neutron density (which in turn is proportional to fission energy release for a given A). Since
all calculations started from initial equilibrium with N(0) = 1 neutron/cm? the compensated
reactivity p(¢) is represented, equation (3a), as

p(t) =1()+ P(t)/ N dt' (&)
0

where P(?) is the shutdown coefficient of the reactor system ranging from ~10~'3 cm?® s~! for
slow systems to ~10~7 cm? s~! for fast metal systems. However, it will not be necessary to
specify the explicit form of p(¢) until a specific problem is considered.

Equations (1) and (2) can be rewritten in matrix form as

dq;t(’) — AOY () +5(1) ©)
where
V() =col[N()  Ci(t) - Con)]
—collW, (1) Wa(t) -+ Wi (0)]

S(t) =col[S®) 0 --- 0]
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and
o) —pB T
A A A
A 2 G
i) 0 0
A
A= P o L, o 0 | =rayl
A
Bc
PG 0 0 ... —x
L A G

denotes a G + 1 x G + 1 matrix. In most cases the extraneous source contributions are
negligible, so that S(r) = 0 [10]'.
If the reactivity p is constant, it is easy to verify that the exact solution of equation (6) is

W () = exp[A ] (0).

In particular, if ¥, and W, ,; denote the solution at times ¢, and t,,; = t, + At, respectively,
then

W,,1 = exp[A At]W,. )

If the reactivity p (and thus the matrix A) is a function of time, then equation (7) will
no longer give the solution for equation (6). However, equation (7) suggests a form that
should be quite suitable for generating an approximate solution of the more general problem
(time-dependent problem). The variation in reactivity over the interval [#,1, £,] is accounted
for by replacing the exponential argument in equation (7) by the average of A(¢) at ¢, and #,4;.
That is, equation (7) is generalized to read

Wy = exp [(A;ﬂm} vy (8)
where W is now an approximation to the exact solution ¥,. Note that equation (8) would be
reduced to equation (7) if A is a constant matrix. The local discretization error of the method
has been estimated [1] and was found to be in the order of O(Af)3.

To enhance the method of calculations we have developed a purification method [1] based
on an approximate expression for exp(A Af) with the explicit treatment of the real roots of
the inhour equation. This method was found to be very fast and accurate and has the ability
to reproduce all the feature of transients, including the prompt jump, and will be summarized
here.

The approximate expression of the exponential matrix A or generally (A Af) is

G

exp(A At) = f(A A1) + Z [exp(Atw;) — f(Atw;)U; V! )

i=0
where U; and V; are the eigenvectors of the matrices A and A”, respectively, which form a
biorthonormal set when properly normalized [11], so V,.T U, = 8;x. We should note that, if
f (At w;) is a good approximation for exp(Af w;), we are justified in dropping the ith term
from the summation. It will have a very small coefficient, namely,

[exp(At w;) — f(At w;)] << 1. (10)

' At very low flux, as in reactor startup, the source perturbation on kinetic behaviour can be appreciable. However,
many reactor control problems are concerned with power levels at which source perturbation is negligible.
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Since exp(At w;) ~ f(At w;), thus, to a high degree of accuracy, we have

/
exp(Ar A) = g(ArA) = f(ATA)+ ) [exp(Atwx) — f(At wQ)]ULV, (11
k

where the sum ) is over only those k for which equation (10) does not hold.

k
The vectors Uy and V are easily calculated from their defining equations as

Uk=<:01|:1 il il i|
A+ i AG + wi
where
] P
M1 = A MG = A
and
A A
Vk:,,kcol[l M 76}
(A1 + wy) (Ag +wy)

where vy is the normalization factor, given by
-1
G
ik
w=1+y — | <.
[ gt

3. The Padé approximations and related inversions (rational matrix functions)

The accurate evaluation of the matrix exponential is itself a difficult problem. Unless the
time step size is uncomfortably small, the power series defining the exponential converges
too slowly for practical use. What is required here is to replace the exponential in
equation (11) by certain rational matrix functions to approximate it. To achieve this a
particular class of approximations for the exponential function, namely, the Padé rational
approximations [12, 13], is considered. In addition to the four rational approximations
mentioned in the previous work [1], we treated eight such Padé approximations of varying
accuracy with time varying reactivity. For any of these approximations in which the degree
of the polynomial’s denominator is larger than unity, we have a full square matrix of order
(G + 1) to invert. This is a task one normally tries to avoid, particularly for the case of varying
reactivity when such inversion needs to be done at every time step.

However, we have developed a new method [1] to obtain a simple analytical expression
for such inverses by going temporarily to the complex plane. The appendix summarizes this
technique briefly. As a result, the same number of arithmetic operations that are sufficient to
multiply the inverse of a polynomial of the matrix A by a vector is equal to those required to
multiply the polynomial by itself. This fact makes the computational effort involved in using
implicit methods of any order equal to that used for explicit methods of the same order (Taylor
series expansion). However, the instabilities associated with the latter are avoided. Table 1
shows different types of Padé approximations considered here together with the associated
errors and the form of such inverses.

The inverse of [I — €A] required by the Padé approximations is to be found using the
analytical inversion method (see the appendix) as

I—cAl ' =y~ lab’ +C (12)
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Table 1. Different types of rational approximation (Padé approximations) of the exponential

matrix.
Case
Padé Explicit form Implicit form Errors €
1 I (A1)2A2
[ [1—eA]™! T2 &
foi T —(ANA] o3
(Az)A 343
2 (9% [T —eAI" {1 +£4) ’(Atl)zA ar
e B Ar
ADA
fa (1 @na ) +o(An? 2
2(A1)A (A1)2A2 4 ad
3 ([ ) . 2ANA  (An2A2 _(an7A At
£ W [1 —¢eA] I+ —3 + — 72 3
21 (1 ) +O(A1)S
z(Az)A (A1)2A2 (An3 A3 545
4 (’ ¢t O 3(AnA - (An2A  (anial _an’a At
oA [I —¢eA] I+ " + 7 + 2 480 =
fs1 (1-tap2) +0(An)°
(A3 A3
5 I A
———~ 7 —eAl" [T —7A]"! T 7’(1 +i)
oz (1 —(ADA+ %) +o(ant
(ADA 4 44
6 (r+9) ], (AnA Lana At i
— N e ) S
fi2 (l _2an4 (Az)-A-) LoD 2
3 6
(ADA | (An2A2
1 545
7 ( i & ) i ], L (AnA - (an?A? Lanta At i
[l —eA" 1 —zA Y1+ —2 4 720 -\t 7=
Vi
faz (1 _(anA | @n2a? 2 12 Lo 4 2
2 12
242 343
743804 300242 (Anda U —eAl 1 —5A]! (ANOAS )
8 =5 20 60 . Ar ;
Faa . — ,, 304 3an2A2 @aniad 7200 = (1 + i)
3,2 (1 TN (A%A-) S >0 o roan] E
444
o ! [ — eAT [ — A)1[1 — ea]! _APAT A (0.1867,0.4808)
fo3 I —(AnA+ G022 _ (a3a3 ¢ ¢ ¢ +0(A2:;5 ¢ = A1(0.6265)
_ 242 _ ()
(ADA 545
10 (1+59) IR | ana _an°A At (0.1846,0.2745)
[I —eAl '[I —€A] '[I —eA]l I+ —— 480 — AN0.3808
f13 I_ 3A41A . (Ar)42A2 _ (A132A3 4 LoAnS e = Ar(0.3808)
2A80A | (An2a? 1y _ A -1 646
I _ _ _
1" ( s v ) Ureal “Lr=eal 17— eAl _LADTAT Ar(0.6256,0.1849)
f23 A, 3a2A2 (Az)3A3) {1 + @ + (Atz)OA } +0(7Azt()’9 ¢ = A1(0.2749)
st 0 T e
14+ @0A L @an2a2 | @anda 1 — e AT — FAT 7 — el 7.7
12 T ot U= eAl T =A] PIT=eAl & _ADTAT 00,1424, 0.1358)
(ADA  (AD2A2 (An)3A] 100800 _
2.2 343 p8na Ao A e = A1(0.2153)
B3 (’ - A (pAs (DA ) { T2 T TTo } +0(And

where ¢ is a scalar. The validity of this expression can be verified directly by multiplying
equation (12) by [I — ¢A]. For a complex conjugate pair, a pair of factors was considered:

[I—cA]'[I—2A]"" = [I—2Re(e)A + |¢|?A%] 7.

This is a real matrix and has a real inverse (for more details see the appendix).

4. Numerical results

The general solution for N (¢) has been coded in Visual FORTRAN and developed to include
other types of Padé approximations. The designated AIM (analytical inversion method)
code, figure 1, is applied to the step reactivity insertion, ramp input and oscillatory reactivity
changes. Whenever the reactivity is given, including the case in which the feedback reactivity
is a function of neutron density, the developed code can provide a straightforward procedure
for computing the neutron density. The values for A, 8, and A, (in s~!) for the representative
reactors are shown in table 2, for six delayed neutron groups.
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Input the parameters of different type of reactors

v

Choose the type of reactivity p(t)
I

v

Calculate
e Coefficients of the inhour formula
e Calculate the eigenvalues ; the Point Kinetics Matrix

e Calculate the eigenfunctionsu; the Point Kinetics Matrix

v

Choose among the approximate functions
of different order (Padé approximations)

v

Calculate the Inverse Using the
Analytical Inversion

IF
[exp (hw) — f(how,)] <<1

Treating ®; Explicitly

N

v

Flux and Precursors Calculations

Reactivity
Feedback

- No

Figure 1. Block diagram for AIM.

4.1. Step reactivity

Tables 3 and 4 show four different transients, all starting from equilibrium condition and with
N(0) = 1 for two representative thermal and fast reactors. These tables present the exact
N(¢) [1] and the relative per cent errors of the calculations for several options of the method
presented in this work. The results are shown for selected times ¢ during the transient and for
several values of the time step size used in the calculations. The results in table 3 indicate the
RPEs (relative percentage errors) for the considered Padé approximations of a thermal reactor
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Table 2. Delayed neutron parameters of typical reactors.

Thermal reactor Fast reactor 235U—graphite reactor

Neutron

group Ai Bi Ai Bi Ai Bi

1 0.0127 2.850E—04 0.0129 1.672E—04 0.0124 2.10E—04
2 0.0317 1.597E—-03 0.0311 1.232E-03 0.0305 1.41E—03
3 0.0115 1.410E-03 0.134  9.504E—04 0.111 1.27E-03
4 0311  3.052E-03 0.331 1.443E—-03 0.301  2.55E—03
5 1.40 9.600E—04 1.260  4.534E—04 1.13 7.40E—04
6 3.87 1.950E-04 3.210 1.540E—-04 3.0 2.70E—04

Biot = 0.0075 Brot = 0.0044 Biot = 0.00645

A=50x10"%s A=10x10"s A=10x10"%s
A=10x 1075

at +0.5$ for the explicitly treated and untreated most effective roots. On the other hand, table 4
represents the RPEs of a fast reactor at +0.5$.

The values of the explicitly treated term [exp(Af w;) — f (At w;)] for both thermal and
fast reactors are presented in table 5. Spotlight on this table shows that the most effective
dominant roots are ws and wg terms for negative reactivity within the interval (—1$, 0$). While
in the case of positive reactivity the most effective roots are wg, ws and wg terms, which have
a large magnitude within the reactivity interval (0$, +13$). At low-order Padé approximations,
the most effective terms are ws and wg within the reactivity interval (—3/4$, 3/48$) for a fast
reactor. The effect of these terms decreases at higher order of Padé approximations, while the
effect of w( term increases.

The above considerations, coupled with the fact that for most practical cases only one of
the wp and w; (i = 5, 6) is of a large magnitude, indicate that in many problems satisfactory
results will be obtained by treating explicitly only three terms in equation (11). Comparison
of the RPEs for treated and untreated roots in tables 3 and 4 confirms that a large correction
effect could be obtained by treating the most dominant roots explicitly, a feature shared by
most considered cases at different time steps.

4.2. Ramp reactivity input

To check the accuracy of the new adopted technique comparisons were made to the few special
cases for which analytic solutions exist. Two such cases are presented here, and the results
are typical for the other studied cases.

The first example of a ramp reactivity input at a slow rate of 0.1$ s~ is treated by Nishigori
[14] and Chao [4] where the parameters for six delayed neutron groups are taken from the
latter. The generation time, A =2 x 1073 s, is kept constant. The values of N (¢) obtained with
the AIM are compared to those obtained with the 6-weighting method reported by Porsching
[15], the SCM method of Chao [4] and the analytical solution of Nishigori [14], table 6. Data
in this table show that the AIM results are as good as or consistent with those of 8-weighting
and SCM even though AIM uses time steps much larger than those of the other methods.

The second example is taken from the work reported by Keepin and Cox [10]. The N (¢)
response to linear time variation of reactivity p(f) = at from initial equilibrium for assumed
values of the prompt neutron generation times, A = 107 and 10™* s, is shown in figure 2. It
is clear that the neutron density profile agrees within graph-reading error with the numerical
results presented by Keepin and Cox [10].
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Table 3. The RPEs and exact N (¢) for different cases of Padé approximations for a thermal reactor

at +0.58.
Time (s)
0.1 1.0 5.0 10
Automatic Without Automatic Without Automatic Without Automatic Without
inclusion of inclusion of inclusion of Inclusion of inclusion of inclusion of inclusion of inclusion of
At Case w; terms wj terms wj terms wj terms wj terms wj terms w; terms w; terms
1 1.1890E—04 —5.8749E+00  8.7007E—05 —1.0758E—01  3.4352E—05  7.8549E—01  2.2540E—06  1.5391E+00
2 —3.8168E—05  1.2025E+00 1.4849E—05 9.9404E—03  2.4580E—06  2.3863E—03 —2.4355E—05  4.3443E—03
3 —2.2772E—05 —2.0304E—01 1.1264E—05 —9.0382E—04 —7.4225E—06  2.1045E—06 —4.1799E—05 —2.1629E—05
4 —22688E—05 28755E—02  1.8375E—05 1.1665E—04  7.0246E—06  6.7927E—06 —1.8538E—05 —1.8781E—05
5 —1.2045E-05 —1.2579E+0 5.5281E—07 —1.7138E—02 —4.7668E—05 —4.8666E—06 —1.1718E—04 —8.9719E—03
01 6 —2.5386E-05  1.3059E—01 1.3733E-05 6.3715E-04 —3.6772E—06 —5.7199E—03 —3.6460E—05 —4.2936E—05
: 7 —23764E—05 —1.3652E—02  1.3916E—05 —3.4530E—05 —1.9152E—07 —9.8213E—08 —2.8959E—05 —2.8859E—05
8  —23175E—-05 1.2997E—03  1.6874E—05 2.2015E-05  3.8571E—-06  7.3461E—06 —2.3705E—05 —1.7122E—05
9  —6.5432E-05 —2.4073E-01 1.3805E—05 —1.3628E—03  8.2864E—06  2.4137E—05 —1.2478E—05  2.5877E—05
10 —2.8350E—-05  1.4262E—02  1.4732E-06 5.4645E—05  3.2086E—06 —3.0390E—05 —8.4248E—05 —8.0996E—05
11 —2.5680E—05 —1.0147E—03  1.7548E—05 1.5351E—05  3.9025E—06  7.4001E—06 —2.4605E—05 —1.8028E—05
12 —1.6628E—05 5.2385E—05  2.0204E—05 2.0413E-05  1.2072E—05  1.2701E—05 —9.3569E—06 —9.3578E—06
1 1.1302E—04 —4.1137E—01  4.5230E—05  2.0105E+00  4.2675E—05  3.9631E+00
2 —2.2549E—-05 5.1283E—02 —5.0988E—05  1.4859E—02 —9.8958E—05  2.7223E—02
3 5.1146E—08 —4.4760E—02 —1.8927E—05  7.0043E—05 —5.3221E—05 1.5702E—04
4 2.4814E—05 5.1024E-03  1.1427E-05  4.0417E—06 —1.7088E—05 —2.5012E—05
5 7.9307E-05 —9.5790E—02  8.0555E—05 —3.0483E—02  7.4821E—-05 —5.6313E—02
025 6 1.8185E—05  7.6659E—03  5.3043E—06 —7.1852E—05 —2.2008E—05 —2.1411E—04
7 1.7698 E-05 —2.4788E—03  9.0535E—06  1.0250E—05 —1.3127E—05 —1.1676E—05
8 5.5064E—06 5.7145E—04 —2.0511E—05 —1.8583E—05 —6.3691E—05 —5.9343E—05
9 2.5591E-05 —1.3838E—02  3.1507E—05  2.7885E—04  2.1502E—05  6.1862E—04
10 9.2970E—06 1.4794E—03 —1.6024E—05 —1.5363E—05 —5.8344E—05 —5.7935E—-05
11 1.7693E—06 —2.9853E—04 —2.7897E—05 —2.4698E—05 —7.5693E—05 —6.9979E—05
12 2.2280E—05 8.0880E—05  1.2712E—05  1.2614E—05 —1.0245E—05 —1.0345E—05
1 3.1144E-05 —1.2038E+00 —4.1621E—05  4.1883E+00 —1.4861E—05  8.3418E+00
2 —9.9101E-05 —3.7411E+00 —8.9777E—05 5.9091E—02 —1.1604E—04  1.0930E—01
3 —8.0823E—06 —7.2275E+00 —3.0822E—05 —9.1207E—03 —5.3746E—05  1.5206E—03
4 9.4930E—05 —5.3327E+00  8.9155E—05 —2.2499E—03  5.2561E—05 —3.0656E—05
5 7.3511E-05 —3.5714E—01 1.7928E—05 —1.2547E—01 —3.7236E—05 —2.3266E—01
6 —1.3669E—05 —7.9163E—02 —3.6223E—05 —6.7459E—04 —7.8128E—05 —1.6524E—03
05 7 —1.0839E—05 —2.0426E—01 —4.4836E—05 —5.3865E—05 —9.5190E—05 —1.0012E—04
8 1.7566E—05 —2.5455E—02 —3.2008E—06 —1.2144E—05 —4.2018E—05 —4.9320E—05
9 5.2806E-05 —7.2427E—02  6.9508E—05  2.2633E—03  7.3503E—05  5.0633E—03
10 1.7437E—06 1.0035E—02 —2.1887E—05  4.2929E—06 —6.2586E—05 —3.8857E—05
11 —2.7505E—06 —1.6636E—02 —3.2409E—05 —2.7653E—05 —7.9895E—05 —7.2029E—05
12 7.5848E—06  4.6418E—03 —1.9300E—05 —2.1176E—05 —6.2925E—05 —6.4840E—05
1 —8.3448E—05 —3.0368E+0  —1.6363E—04  9.1453E+0  —5.5655E—05  1.8634E+1
2 —7.2758E—04 2.0266E+1  —2.3551E—04  1.4425E+0 —2.5944E—04  3.9540E—1
3 9.63890E—04 —5.9450E+1 2.6236E—05 —3.4555E+2 2.6735E—06 —3.6468E+3
4 —1.2144E-03 1.2572E+2 7.5065E—-04  1.5604E+4 7.3340E—04 —7.4367E+6
5 3.1173E-05 —1.3003E+0  —8.2029E—05 —5.3094E—01 —1.4369E—04 —9.8862E—01
10 6 —1.5904E—04 3.2429E+0  —9.0478E—05 —5.4745E—03 —1.3359E—04 —1.3167E—02
7 1.2567E—04 —7.6058E+0  —1.8299E—05 —1.2129E—-02 —6.4767E—05 —3.0299E—04
8 —1.1510E-04 1.3303E+1 5.9622E-05  2.0665E—01  2.1423E—05 —1.3586E—03
9 6.1222E—05 —3.5425E—01  7.3221E—05  2.0295E—02  1.0506E—04  4.3177E—02
10 —3.6513E—05 7.3741E—-01 —3.5427E—05 3.3681E—04 —7.3264E—05  2.9874E—04
11 2.3954E—05 —1.3750E+0 —1.3469E—05 —2.9667E—05 —5.0063E—05 —4.3784E—05
12 —1.5658E—05 1.9837E+0  —1.4419E-05 —9.7770E—-06 —6.1372E—05 —7.3433E—-05
Exact N(r) 1.533113 2.51149%4 5.753393 14.21503

4.3. Oscillatory reactivity

In this case the reactivity p(¢) is a function of time given as

. 1
p(t) = po+usinwt = po+ ~ |

2

iwt

— +C.C.
1
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Table 4. The RPEs and exact N () for different cases of Padé approximations for a fast reactor at

+0.58.
Time (s)
0.1 1.0 5.0 10
Automatic Without Automatic Without Automatic Without Automatic Without
inclusion of inclusion of inclusion of inclusion of inclusion of inclusion of inclusion of inclusion of
At Case w; terms wj terms w; terms wj terms w; terms wj terms w; terms wj terms

2.8605SE-05 —1.0359E—01  2.1641E—05 —3.3818E—03  5.2860E—05  6.2100E—01  8.2686E—05  1.2193E+0

1
2 —74251E-06  4.8099E+1  —2.0117E-05 —3.6967E+1  —2.6773E—05 —1.6183E+1  —4.2525E—05 —6.5374E+0
3 9.8225E—04 —5.2833E+4 44541E-04 —9.463E+31 43617E-04 —1.778E+153 4.2635E-04 —7.892E+304
4 1.2253E+00 3.8693E+7  —2.7887E—01 —4.200E+60  —2.8126E—01 —3.063E+296 —2.7854E—01 —8.123E+350
5 9.9310E-06 —7.3383E—03 —5.9929E-06 —7.3331E—-03 —4.2950E—-06 —3.4799E—-03 —1.0013E-05 —6.2875E—03
o1 6 1.1745E—-05  4.3862E—02 —3.5766E—06  1.1888E—04  4.3435E—07  6.5060E—07 —2.5022E—06 —4.4618E—06
: 7 —6.8318E—05 —4.7919E+1  —2.3747E—-05 —3.5652E+1  —5.1711E-06 —1.3495E+1  —4.8368E—07 —4.5476E+0
8 49301E-03  3.5062E+4  —8.6401E—03 —1.568E+30  —7.0450E—03 —2222E+144 —6.6062E—03 —1.232E+287
9 2.5054E—05 —4.5973E—04  14114E—05 —3.0354E—04  3.5701E-05 4.4876E—05 52512E—05  7.6355E—05
10 8.8884E—06  7.6354E—05 —7.4402E—06 —2.5518E—06 —6.8588E—06 —5.2296E—06 —1.3873E—05 —1.0868E—05
11 3.7753E—05 —6.5156E—02  9.2965E—06  1.0086E—05  3.8666E—07  3.5651E—06 —1.2968E—05 —7.0645E—06
12 —22098E—02  4.7637E+1  —1.4045E—02 —3.3758E+1  —1.0308E—02 —1.0276E+1  —9.6113E—03 —2.6394E+0
1 34271E-06  1.1750E—02  1.3654E—05  1.5848E+00 1.8433E—-05  3.1255E+00
2 —1.6205E-05 —3.7514E+1  —2.0751E-05 —1.7459E+1  —3.3956E—05 —7.6003E+0
3 1.0302E—-03 —2.1426E+15 1.0383E—03 —1.0580E+70 1.0339E—-03 —2.795E+138
4 —1.9999E+0  —2.4156E+28 —7.8337E—01 —1.927E+135 —5.5366E—01 —9.272E+268
5 2.8692E—-05 —3.9312E—02  6.7428E—05 —2.1934E—02  1.0615E—04 —3.9798E—02
025 6 —2.2770E—05 1.7398E—03 —3.5016E—05 —7.9822E—05 —5.7468E—05 —1.7665E—04
7 1.1780E—04 —3.7322E+1 8.9855E—05 —1.6968E+1 7.2573E—-05 —7.1877E+0
8 —2.5809E—01 —4201E+14  —1.9681E-01 —3.068E+66  —1.8345E—01 —2.3507E31
9 —1.7675E—-05 —3.7703E-03 —1.5143E-05  1.3754E—04 —2.2692E-05  3.5697E—04
10 —7.9301E-06  1.4147E—-04 —1.7671E-05 —1.6668E—05 —3.7167TE—-05 —3.6432E—05
11 —1.1483E—04 —1.2253E-04 —8.1336E—05 —7.8832E—05 —7.8800E—-05 —7.4165E—05
12 7.5635E—02 —3.7008E+1 54691E—02 —1.6238E+1 5.0860E—02 —6.5719E+0
1 1.3584E—05  9.0896E—02  3.5985E—05  3.2844E+0 5.5467E—05  6.5273E+0
2 2.6526E—07 —3.7515E+0 6.8001E—06 —1.7618E+1 7.0113E-06 —7.7101E+0
3 7.9180E—-04 —1.1375E+0 1.2132E-03 —4.462E+38 1.2772E-03 —4.972E+75
4 —1.1673E+2  —1.5286E+16 —1.8571E+3  —1.955E+74  —4.7659E+4  —9.549E+146
5 —2.8583E—-05 —1.2943E—-01 —5.2032E-05 —9.0086E—02 —8.7850E—05 —1.6423E—01
05 6 —2.8919E—05 1.2989E—02 —4.6429E—05 —4.3575E—04 —7.5264E—05 —1.0728E—03
- 7 —8.4294E—04 —3.7573E+0  —5.3938E—04 —1.7541E+1  —4.9668E—04 —7.6843E+0
8 —1.7408E+0  —5.046E+08  —1.2968E+0  —7.669E+36  —1.2076E+0  —1.468E+72
9 —7.5681E-06 —2.0136E—02  4.8677E—06  1.3381E—03  7.2863E—06  3.1414E—03
10 8.0354E—06  1.9479E—03  2.0768E—05  3.5948E—05 2.8345E—05  4.0248E—05
11 —29777E—04 —5.5383E—04 —2.0997E—04 —2.0778E—04 —1.9937E—04 —1.9456E—04
12 —5.6444E—01 —3.7430E+1  —3.9935E-01 —1.7399E+1  —3.7113E—-01 —7.6390E+0
1 —1.8144E—-05  4.3318E—-01 —3.2788E—05  7.0860E+0  —5.7620E—05 1.4319E+01
2 1.2542E—05  3.8330E+1 2.1408E—05 1.7882E+1 2.8958E—05 —7.5185E+0
3 6.0594E—03 —4.1403E+5 5.4382E—-03 —2.850E+21 5.3393E—-03 —2.028E+41
4 1.5544E+2 3.0359E+9 2.2185E+04 6.0426E+40 —1.2418E+7  —9.116E+79
5 —1.3184E—-05 —3.9077E—01 —2.0552E—05 —3.7800E—01 —3.6952E—05 —6.9341E—01
10 6 —2.0098E—05 1.1682E—01 —3.1979E—-05 —3.3508E—03 —5.3320E—05 —8.2473E—03
7 —4.7791E-03 —3.7686E+1  —1.0979E—03 —1.7688E+]1  —1.0135E—03 —7.8137E+0
8 8.3473E+00 2.7590E+5  —2.8803E+0 3.746E+20  —2.7655E+0  —3.5041E+39
9 —8.0036E—06 —8.6646E—02  3.3106E—05  1.2214E—02  6.7952E—05  2.6762E—02
10 —9.6575E—06  2.4867E—02 —1.4272E—-05 2.0839E—04 —2.7692E—05 1.6851E—04
11 —1.3104E—03 —1.4980E—02 —8.5155E—04 —8.5887E—04 —7.8250E—04 —7.7590E—04
12 —1.3735E+1 2.3875E+1  —8.9880E+0 49.3844E+0 —8.3345E+0  —1.0735E+1
Exact N(1) 2.075317 2.655853 5.641 100 12.746 54

where pg is the constant part of the excess reactivity, sin wt is a given function characterizing
the time dependence of the reactivity and C.C. is the a complex conjugate of the first term.
The parameter p is a positive number that represents the magnitude of the variable part of
the excess reactivity in dollars. It will be assumed that this parameter is sufficiently small
compared to unity. This is a real assumption since, except in the accidental case, the excess



Table 5. Values of the coefficients |exp(hw;) — f (hw;)| for different cases of Padé approximations w;, i = 1,2, 3, 4, wp, ws, we are the real roots of the inhour equation (1$ = 1 dollar
reactivity)
Case 1 Case 2 Case 3 Case 4
exp(hw;) — fi(ho;) exp(hw;) — fo(hw;) exp(hw;) — f3(hw;) exp(hw;) — fa(hw;)
Type Reactivity ® min max min max min max min max
Thermal —1$ — 0% wo 0.0 7.22440E-05 0.0 1.22999E—-07 0.0 1.61235E—10 0.0 5.48289E—13
reactor w; 1.288060E—06  1.63201E—01 2.83317E—10 6.15001E—02  5.59054E—11 1.74935E—02 3.73508E—17 4.03586E—03
ws  4.00526E—02 1.869 ISE—01  3.08829E—03  3.34257E—01 2.11631E—04 3.666 16E—01  1.25630E—05 2.967 68E—01
we 3.20222E—02 2.03316E—01  8.52184E—02 8.758 86E—01  2.963 13E—02  1.202 04E+1 8.25178E—03  1.103 32E+2
0$ — 1% wo 0.0 8.680 86E+0 0.0 9.915 67E+01 0.0 1.879 42E+0 0.0 3.223 86E—01
w;  858431E—-07 1.55983E—01 1.87835E—10 1.66858E—02 4.87732E—11 1.41329E—-02 3.73508E—17  1.79962E—3
w5  2.08584E—02 2.03607E—01 9.95373E—04 3.28908E—01 4.36779E—05 3.52475E—01 1.68070E—06 2.79739E—01
wg  S5.01970E—02 2.02092E—01  4.65595E—03  7.71094E—01 3.77992E—04  4.967 94E+0 2.64353E—05  2.15946E+1
Fast —-3/4$ > 0% wo 0.0 7.11519E-05 0.0 1.44029E—-07 0.0 1.60431E—10 0.0 5.27536E—13
reactor w; 1.09097E—06  1.52404E—01 2.69184E—10 5.03069E—02 5.49642E—11 1.27374E—02 1.73472E—17 2.63402E—03
ws 3.00605E—02 1987 10E—01 1.861 19E—03 2.66143E—01  1.04128E—04 2.27253E—01 5.076 78E—06  1.458 87TE—01
wg  1.29868E—05 2272 19E—04 9.99091E—01  9.99948E—01  2.196 52E+3 3.849 66E+4 3.219 40E+6 9.88044E+8
0$ — 3/4% wo 0.0 1.54467E—02 0.0 5.906 13E—-02 0.0 5.36968E—03 0.0 4.91729E—-04
w;  896981E—07 1.47842E—01 2.00637E—10 4.62492E—02 4.94186E—11 1.11689E—02 4.14707E—17  2.20905SE—03
ws  2.71853E—02 2.01198E—01 1.56387E—03  2.61807E—01 8.17139E—05 2.19865E—01 3.72769E—06  1.38989E—01
we 2.27266E—05 9.08137E—04 9.96371E—01  9.99909E—01  5.46590E+2 2.199 67E+4 1.998 99E+5 3.22599E+8

poyJow UOIsIOAUT [ednAfeue oy eia suonewrxoidde oped £q suonenbs sonoury jurod oy jo uonnjog

6196



Table 5. (Continued.)

Case 5
exp(hw;) — f5(hw;)

Case 6
exp(hw;) — fe(hw;)

Case 7
exp(hw;) — f7(hw;)

Case 8
exp(hw;) — fs(hw;)

Type Reactivity [0} min max min max min max min max
Thermal —1— 0% wy 0.0 2.92081E—-07 0.0 6.54059E—10 0.0 3.66535E—13 0.0 1.69555E—-10
reactor w;  5.65995E—10 4.58894E—02 5.60141E—11 8.96519E—03 7.36715E—17 1.60293E—03 5.59481E—11  1.83993E-4
ws  4.61530E-03 6.13161E—02 1.73438E—04 6.75692E—02 7.17688E—06  5.21048E—02 2.95956E—07  3.168 07E—02
we 2.04874E—03  6.89885E—02  1.35975E—02 9.82991E—02 3.006 16E—03  6.72358E—01  5.85762E—04  5.791 66E+0
0$ — 1% wo 0.0 6.766 47E+0 0.0 2.683 92E+0 0.0 4.54965E—01 0.0 6.638 65E—02
w; 3.75300E—10 4.248 16E—02 4.88343E—11 7.53624E—03 5.42101E—17 1.24058E—03 4.87925E—11 1.83993E—-04
ws  1.64462E—03  6.87945E—02 3.83025E—05 6.63835E—02 1.01152E—06 4.99899E—02 3.308 01E—08  2.97492E—02
ws 6.62164E—03  6.86315E—02 2.99669E—04 9.82991E—02 1.47203E—05 4.60671E—01  7.04269E—07  1.78074E+0
Fast —3/4$—-0% wp 0.0 2.85463E—-07 0.0 6.423 88E—10 0.0 3.52649E—13 0.0 3.55756E—10
reactor w; 537769E—10 4.08404E—02 5.50644E—11 6.91828E—03 4.14707E—17 1.09461E—03 5.50028E—11  1.56469E—04
ws  292582E-03 6.718 12E—02  8.828 65E—05  5.336 80E—02  2.97723E—06 3.11854E—02 1.05692E—07  1.47516E—02
we 3.37314E—10 1.03257E—-07  2.59716E—05 4.538 19E—04 9.97277E—01  9.99844E—01  1.46103E+3 2.566 11E+4
0$ — 3/4% wy 0.0 1.67186E—-01 0.0 7.65455E-03 0.0 4.38079E-04 0.0 2.659 62E—05
w;  4.00871E—10 3.87940E—02 4.99166E—11  6.20396E—03  4.14707E—17  9.34155E—04 4.98754E—11 1.27517E—04
w5 249588E—03  6.82803E—02 6.99929E—05 5.24234E—-02 2.20331E—06 3.00776E—02  7.53207E—08  1.39935E—02
ws  1.03299E—09  1.64942E—06 4.54469E—05 1.80639E—03 9.89152E—01  9.99727E—01  3.61098E+2 1.466 11E+4
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Table 5. (Continued.)

Case 9 Case 10 Case 11 Case 12
exp(hw;) — fo(hw;) exp(hw;) — fiothw;) exp(hw;) — fi1(ho;) exp(hw;) — fiz(hw;)

Type Reactivity ® min max min max min max min max
Thermal —1$ — 0% wy 0.0 8.86069E—10 0.0 2.156 85E—11 0.0 1.19591E—10 0.0 1.15401E—15
reactor w;  2.13014E—13 1.84734E—02 1.18361E—15 1.18306E—03 5.197 I5SE—11  1.14702E—04  3.13508E—17  1.10563E—05
ws  4.22226E—04  2.20771E—02 9.19697E—06  1.13303E—02  2.11954E—07 9.19868E—03  7.18241E—09 4.18272E—03
weg 1.96401E—04  2.11224E—02  2.15254E—03 1.12147E—02 3.17910E—04 6.18291E—02 4.11721E—05 4.12861E—01
0$ — 1% wy 0.0 1.136 48E+1 0.0 1.187 62E+0 0.0 1.14497E-01 0.0 1.142 44E—-02
w;  1.13055E—13  1.102 12E—02  7.10756E—16  1.10821E—03 4.18106E—11  1.11345E—04  3.13508E—17  1.198 68E—05
ws  1.10293E—04  2.16767E—02 1.17065E—06  1.198 14E—02  1.14972E—08 9.17316E—03  4.14827E—10  4.19224E—03
we 7.13261E—04  2.19481E—02 1.136 I6E—05 2.14237E—02 5.16108E—07 6.18291E—02 2.11227E—-08 2.15071E—01
Fast —-3/4$ > 0% wo 0.0 8.19361E—10 0.0 2.131 17TE—-11 0.0 3.13831E—10 0.0 1.13254E—15
reactor w; 1.18689E—13  1.13528E—02  1.12712E—15 9.13583E—04 5.10258E—11 1.14508E—04 4.14707E—17  1.17740E—05
ws  2.13021E—04  2.10354E—02 3.12245E—06 1.18318E—02 7.17452E—08 5.14298E—03  2.13894E—09 1.19158E—03
we 1.11419E—14  7.13859E—11  1.11184E—09  3.19208E—07  3.19523E—05 6.19183E—04 9.14560E—01  9.196 88E—01
0$ — 3/4% wy 0.0 3.19510E-02 0.0 8.19561E—04 0.0 3.17361E—05 0.0 1.16723E—06
w; 1.14395E—13  9.14669E—03  9.10462E—16  8.14584E—04 4.18943E—11 8.14887E—05 3.14961E—17 8.108 87E—06
ws  1.18756E—04  2.11511E—02  2.12729E—06 1.18318E—02 5.15698E—08  5.12792E—03  1.12557E—09  1.18409E—03
we 71.14291E—14  4.19370E—09  3.19841E—09 4.11239E—06 6.11549E—05 2.18506E—03 9.18421E—01  9.19455E—01

poyJow UOIsIOAUT [ednAfeue oy eia suonewrxoidde oped £q suonenbs sonoury jurod oy jo uonnjog

1296



9622 A E Aboanber and A A Nahla

1.LE+06
)
3
o
A
5 1.E+05 A
g
Q
-
=
& LE+04 1 pt)=at
s
é UZH
z
5 1.E+03 A A :lo_j
2
Z -—— A=107*
5
A 1.E+02 1
=
g
3
z
% 1E+01
z
1.E+00 - T T T
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time, Seconds
Figure 2. Response to linear variation of reactivity in U3 systems characterized by prompt

neutron generation times in the range 10~* s to 1077 s.
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Figure 3. Variation of the flux with time for a sinusoidal reactivity input.

reactivity is always less than one dollar. The wave form oscillations of the flux is such that a
modified sinusoidal curve is obtained for different values of the u parameter (figure 3).

4.4. Compensated reactivity

The integration over 7 in equation (5) may be evaluated using either a trapezoidal rule or
Simpson’s rule for numerical integration. The implicit assumption that the integrand can be



Solution of the point kinetics equations by Padé approximations via the analytical inversion method 9623

Table 6. Comparison of the AIM versus other methods for the $0.1 s~! ramp reactivity (moderately
fast ramp).

6-weighting [15] SCM [4] Nishegor [14] AIM

Time (s) At=0.0001s At=0.1s Atr=0.1s Ar=0.0005s Ar=0.5s At=0.001s At=0.1s

2 1.3382 1.3383 1.3382 1.3382 1.3382 1.3382 1.3305

4 2.2283 2.2290 2.2284 Not available ~ Not available 2.2284 22117

6 5.5815 5.5885 5.5819 5.5821 5.5821 5.5820 5.5229

8 4.2781E+01*  4.3215E+01 4.2788E+01 Not available = Not available 4.2786E+01 4.2049E+01

9 4.8745E+02  5.0636E+02 4.8781E+02 Not available Not available 4.8752E+02 4.7639E+02
10 4.5109E+05  7.8558E+05 4.5391E+05 4.5116E+05  4.5115E+05 4.5116E+05 4.3922E+05
11 1.7919E+16  1.5527E+15 1.9593E+16 1.7922E+16  1.7925E+16 1.7916E+16 1.7448E+16

2 Read as 4.2781 x 10,

Table 7. A comparison of reactor transients with reactivity p = 0.17 — 10~ 13 f(; N(t') dt’ by three
different methods.

At At
Time 0.01 0.001 0.0001 Time 0.01 0.001 0.0001
(a) 3.647413E+1 2.570479E+1 2.482902E+1 (a) 7.022039E+8 1.432669E+10 1.436 654E+10
0.1 (b) 3.647414E+1 2.570469E+1 2.482925E+1  0.45 (b) 7.553930E+9 1.624986E+10 1.475784E+10
(c) 3.647414E+1 2.570469E+1 2.482925E+1 (c) 7.553930E+9 1.624986E+10 1.475784E+10
(a) 2.702590E+4 1.239887E+4 1.147 786E+4 (a) 1.466456E+9 9.993 182E+9  9.955653E+9
0.15 (b) 2.702593E+4 1.239866E+4 1.147635E+4 0.5 (b) 9.736886E+9 8.128389E+9  9.678 249E+9
(c) 2.702593E+4 1.239866E+4 1.147 635E+4 (¢) 9.736886E+9  8.128389E+9  9.678 249E+9
(a) 2.826209E+9 8.287527E+8 7.336 549E+8 (a) 1.837974E+10 1.145603E+10 1.146433E+10
0.2 (b) 2.809975E+9 8.284594E+8 7.333822E+8 0.6  (b) 9.629 178E+9  1.137569E+10 1.149 131E+10
(c) 2.809975E+9 8.284594E+8 7.333 822E+8 (¢) 9.629 178E+9  1.137569E+10 1.149 132E+10
(a) 2.524568E+8 1.097473E+9 1.164 062E+9 (a) 9.641320E+9 9.761 114E+9  9.764 145E+9
0.25 (b) 1.052509E+9 1.490213E+9 1.203129E+9 0.7 (b) 1.023336E+10 1.004924E+10 9.795691E+9
(c) 1.052509E+9 1.490213E+9 1.203 129E+9 (c) 1.023336E+10 1.004924E+10 9.795693E+9
(a) 2.889617E+8 8.184253E+8 8.166 009E+8 (a) 9.015225E+9 1.008 927E+10 1.008 607E+10
0.3 (b) 9.501868E+8 9.061 560E+8 8.254459E+8 0.8 (b) 1.014411E+10 1.004 058E+10 1.007 777E+10
(c) 9.501868E+8 9.061 560E+8 8.254 459E+8 (c) 1.014411E+10 1.004058E+10 1.007 777E+10
(a) 3.494661E+8 1.410910E+9 1.409498E+9 (a) 1.045903E+10 1.015374E+10 1.015353E+10
0.35 (b) 4.389950E+9 1.740204E+9 1.439587E+9 0.9 (b) 1.011697E+10 1.014071E+10 1.015229E+10
(c) 4.389950E+9 1.740204E+9 1.439 587E+9 (¢c) 1.011697E+10 1.014071E+10 1.015229E+10
(a) 4.598494E+8 3.744299E+9 3.750430E+9 (a) 1.018628E+10 1.010474E+10 1.010441E+10
04 (b) 1.799477E+10 5.685998E+9 3.912651E+9 1.0 (b) 1.011392E+10 1.010907E+10 1.010485E+10
(c) 1.799477E+10 5.685998E+9 3.912651E+9 (¢c) 1.011393E+10 1.010907E+10 1.010485E+10

(a) 1.003 130E+10 1.003 068E+10 1.002987E+10
5.0 (b) 1.002926E+10 1.002975E+10 1.002976E+10
(c) 1.002926E+10 1.002975E+10 1.002976E+10

(a) The mean of the summation of the reactor response over the entire interval of integration.
(b) Simpson’s rule.
(c) Trapezoidal rule.

represented by a linear expression over the appropriate time interval(s) is clearly valid as long
as At is kept small. However, as subject to this limitation it is desirable to keep At reasonably
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Figure 4. Compensated response to ramp function reactivity changes in U?3’ systems with prompt
neutron generation time = 5 x 1075 s and shutdown coefficients in the range B = 10~'! cm? s~!

to 10713 cm3 s~

Table 8. The CPU time of calculations for the different cases; all the calculations were done under
the same conditions.

Functions CPU(s)  Functions  CPU (s)

fou 2.41 fr2 5.05
fi 3.62 fia 5.65
f2.| 4.28 f(],3 5.10
31 5.05 fis 5.27
fon 2.63 f3 5.93
fia 4.39 f3.3 6.81

large to reduce the number of computed points, minimize possible round-off error, etc. Table 7
compares the results of reactor transients with reactivity feedback by three methods ((a), (b) and
(c)) at different transients and times. At a small time step At = 0.0001, typical results for
the three cases are reported, while a parallel behaviour of methods (b) and (c) (numerical
methods) is obtained at a large time step. The accurate results are achieved by taking the
mean of the summation of the reactor response over the entire interval of integration, method
(a), table 7. Typical compensated response calculations using the AIM code are illustrated in
figure 4. The results in this figure are self-limiting excursions produced by ramp function
additions of reactivity in >*>U—graphite systems [3, 16] characterized by prompt neutron
generation times in the region of 5 x 107> s, and B values ranging between 107! and
10~ cm? s~!. The N(¢) variations are plotted in figure 4 and exhibit a characteristic damped
oscillatory approach to an equilibrium power level at which the rate of reactivity compensation
due to (adiabatic) temperature increases to just balance the rate of external reactivity
addition.
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5. Conclusions

A time-dependent reactivity inserted into a point reactor is coupled multiplicatively with the
neutron density to form a set of linear equations with time-dependent coefficients. In the
present work we have developed a new AIM (analytical inversion method), applied it to a
variety of problems and compared it to a number of other methods. It not only can employ
much larger time increment steps due to the stiffness confinement, but also computes rapidly
for a given time step due to its completely analytic formulation. The repeated use of the
solution in successive time intervals has been shown to save considerable computing time.
The approach considered here is based on a combination of numerical analysis tools, including
Padé approximations and analytical continuation to the complex plane. Numerical tests show
that the technique is both efficient and accurate to several significant figures.

Although the primary application was to the problem of reactor kinetics, the methodology
used is more general. The developed method has the ability to reproduce all features of the
transients in the solutions. The formalism is applicable equally well to non-linear problems,
where the reactivity depends on the neutron density through temperature and thermal hydraulic
reactivity feedback.

The computing time (CPU) required for each case has been estimated and is dependent
on the number of arithmetic operations. Moreover, this time increases rapidly particularly for
the case of varying reactivity when such inversion needs to be done at every time step.
Table 8 shows the CPU time of the calculations for different types of Padé rational
approximations.

The purification method for the approximate expressions of the exponential function
and the explicit treatment of the most dominant roots give a large correction for the Padé
approximations. The results for selected times during the transient and for several values of
the time step size used in the calculations are shown within the reactivity interval (—1$, +13)
for both types of reactors. The RPEs results for both treated and untreated most effective
roots, tables 3 and 4, show a large correction effect by automatic inclusion of the roots.

The formalism was applied to the other types of reactivity ramp input and periodical
reactivity changes and compared to the results of those obtained using other methods. The
AIM is applicable equally well to non-linear problems, where the reactivity depends on
the neutron density through temperature reactivity. The best results have been obtained by
automatic inclusion of the most effective roots in the basic approximations for these types of
reactivity.

It could be concluded that the AIM method for the solution of the point kinetics equations
is more elegant, more general and more powerful than the other conventional methods. The
applicability of the formalism could be further extended to spacetime kinetics problems.

Appendix

The analytical inversion method is based on an expression for the inverse of [I — ¢A], where
¢ is a scalar. This expression is

I—cAl ' =y~ lab’ +C

where
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C =Diag |0 e )
1 +ei; 1+er I +eks 1+eig
Similarly, we can define [I — FA]~' = ?(_‘)EBT + C, where ¥,a, b and C are the complex

conjugates of y, a, b and C, respectively. For a complex conjugate pair, we consider the pair
of factors:

[ — Al [I —8A]1"' = [I —2Re(e)A + |e|? A% !

which is a real matrix and has a real inverse. This expression can be expressed in the general
form as

[[ —eAl'[I —2A] = () 'F+ Q.

For generality, assume that ¢ = o +1in and & = o — in, where « and 7 are real constants and

1= +/—1, so that

G G
200
yp=1-224 ()4 Z 2u;pia+ i) — = Z 20 p;(1 + )
2 2

G
> wip | +2er? Zu;p] Z wipirj | +r Y wipin
j=1 j=1

Q

where r> = o + n?, p; (1+2ak +r2)»2 j_l G and s* = o? — .

The elements of the matrlx F = [fu] can be written as

G
V=147 wihip,
j=1

G G
0
fien = dapr {2a+r7 | & — A7 Zﬂjpj +r7Qa +r71) Z,Uvj)\jpj
Jj=1 j=1

G G
2 P 2 2
Jeri1 = piepr {2+ 7 Xk—X+X;MjP_j +r°Qa+r )»k)Xl:Mj)»ij
J= J=

L+ 200 (0 + &) + 20k — £ Qo+ 72 (0 + 1))

G
+ Qo +r*M+ ) Y wjp; + 2s*+r?
firtie1 = ki pepi§ 2s% +r? =

G
+2ar2(Ak +A) +r4)»k)»1) Z /L_j)\,jp_j
j=1

wherek =1,2,...,Gand [ = 1,2, ..., G and matrix Q can be written as

Q=diag[0 p1 p» ... pcl.
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